hachyderm.io is one of the many independent Mastodon servers you can use to participate in the fediverse.
Hachyderm is a safe space, LGBTQIA+ and BLM, primarily comprised of tech industry professionals world wide. Note that many non-user account types have restrictions - please see our About page.

Administered by:

Server stats:

9.6K
active users

#arithmetic

0 posts0 participants0 posts today
Rémi Eismann<p>One day, one decomposition<br>A209203: Values of the difference d for 4 primes in geometric-arithmetic progression with the minimal sequence {5*5^j + j*d}, j = 0 to 3</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A209203.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A209203.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A209203.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A209203.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/geometric" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometric</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/progression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>progression</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A209202: Values of the difference d for 3 primes in geometric-arithmetic progression with the minimal sequence {3*3^j + j*d}, j = 0 to 2</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A209202.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A209202.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A209202.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A209202.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/geometric" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>geometric</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/progression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>progression</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A206039: Values of the difference d for 5 primes in arithmetic progression with the minimal start sequence {5 + j*d}, j = 0 to 4</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A206039.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A206039.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A206039.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A206039.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/progression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>progression</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A206038: Values of the difference d for 4 primes in arithmetic progression with the minimal start sequence {5 + j*d}, j = 0 to 3</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A206038.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A206038.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A206038.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A206038.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/progression" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>progression</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
Knowledge Zone<p><a href="https://mstdn.social/tags/PuzzleOfTheDay" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PuzzleOfTheDay</span></a>: (an) is an <a href="https://mstdn.social/tags/Arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arithmetic</span></a> <a href="https://mstdn.social/tags/Sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Sequence</span></a>.</p><p>a11 + a7 = 180<br>a9 + a5 = 136</p><p>What is the value of a99?</p><p><a href="https://knowledgezone.co.in/resources/quiz?qId=640434841a46d3a2ab245cbb" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">knowledgezone.co.in/resources/</span><span class="invisible">quiz?qId=640434841a46d3a2ab245cbb</span></a></p>
Soh Kam Yung<p>"A calculator app? Anyone could make that.</p><p>Not true.</p><p>A calculator should show you the result of the mathematical expression you entered. That's much, much harder than it sounds.</p><p>What I'm about to tell you is the greatest calculator app development story ever told."</p><p><a href="https://chadnauseam.com/coding/random/calculator-app" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">chadnauseam.com/coding/random/</span><span class="invisible">calculator-app</span></a></p><p><a href="https://mstdn.io/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mstdn.io/tags/Calculators" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Calculators</span></a> <a href="https://mstdn.io/tags/Computation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Computation</span></a> <a href="https://mstdn.io/tags/Arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arithmetic</span></a></p>
SplinesThe <a href="https://pixelfed.social/discover/tags/Capital?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#Capital</a> is the last essential component of the complete <a href="https://pixelfed.social/discover/tags/IonicOrder?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#IonicOrder</a>. The column <a href="https://pixelfed.social/discover/tags/flutes?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#flutes</a> remain, but they are <a href="https://pixelfed.social/discover/tags/decorativeElements?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#decorativeElements</a>, and I will cover them later when I cover the decorative elements of the capital like the <a href="https://pixelfed.social/discover/tags/EggsAndDarts?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#EggsAndDarts</a> motif on the <a href="https://pixelfed.social/discover/tags/ovolo?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#ovolo</a> and the <a href="https://pixelfed.social/discover/tags/3StrandBraid?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#3StrandBraid</a> on the ribbon or belt around the middle of the smooth <a href="https://pixelfed.social/discover/tags/scrolls?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#scrolls</a>.<br> <br> The Ionic capital is complex, but not unapproachable. We will systematically construct everything in this draft rendering using just straight lines and arcs as promised in <a href="https://pixelfed.social/p/Splines/789956327130679640" rel="nofollow noopener noreferrer" target="_blank">https://pixelfed.social/p/Splines/789956327130679640</a>, with the exception of the <a href="https://pixelfed.social/discover/tags/cymaReversa?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#cymaReversa</a> near the top and the 3-strand braid on the ribbon.<br> <br> In this rendering, the cyma reversa near the top is made using a flattened half-turn of a <a href="https://pixelfed.social/discover/tags/helix?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#helix</a>, but it can also be constructed using elliptical arcs as I described in earlier posts. <br> <br> The braid is a <a href="https://pixelfed.social/discover/tags/periodic?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#periodic</a> shape with infinite variety and is also based on a helix. You can vary the number of strands, their thickness, pitch, and so on, none of which are essential to the Ionic Order itself. They're only a jumping point for further exploration.<br> <br> The eggs in the 'eggs and darts' motif can have different shapes. They can be convex like real eggs or concave as shown here, but the top is almost always sliced off. The total depth of the convex or concave shapes can vary, but only within a range of 1 part, or 8 units.<br> <br> The <a href="https://pixelfed.social/discover/tags/volutes?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#volutes</a> in the front and back of the capital are based on <a href="https://pixelfed.social/discover/tags/spiral?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#spiral</a> shapes, of which there are many different kinds. Some have <a href="https://pixelfed.social/discover/tags/continuous?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#continuous</a> curvature changes, while some do it in <a href="https://pixelfed.social/discover/tags/discrete?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#discrete</a> steps, like <a href="https://pixelfed.social/discover/tags/fibonacci?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#fibonacci</a> spirals that can approximate <a href="https://pixelfed.social/discover/tags/logarithmic?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#logarithmic</a> spirals seen in nature, e.g., nautilus. When curvature changes are discrete, the spiral arms can diverge in <a href="https://pixelfed.social/discover/tags/arithmetic?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#arithmetic</a>, <a href="https://pixelfed.social/discover/tags/geometric?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#geometric</a>, or some other sequence.<br> <br> We will construct all of these, and most notably the smooth, sweeping surface of the scrolls using just straight lines and arcs, and let the <a href="https://pixelfed.social/discover/tags/CAD?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#CAD</a> software deal with delicate <a href="https://pixelfed.social/discover/tags/NURBS?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#NURBS</a> curves and surfaces.
Jeff Turner ⛵<p>Whats wrong with this picture!</p><p>I had to check this multiple times as I couldnt believe it first time. </p><p>This is Microsoft Windows 10 Calculator. </p><p><a href="https://hachyderm.io/tags/windows" class="mention hashtag" rel="tag">#<span>windows</span></a> <a href="https://hachyderm.io/tags/microsoft" class="mention hashtag" rel="tag">#<span>microsoft</span></a> <a href="https://hachyderm.io/tags/arithmetic" class="mention hashtag" rel="tag">#<span>arithmetic</span></a> <a href="https://hachyderm.io/tags/TeachingMath" class="mention hashtag" rel="tag">#<span>TeachingMath</span></a> <a href="https://hachyderm.io/tags/calculator" class="mention hashtag" rel="tag">#<span>calculator</span></a></p>
Jon Awbrey<p>Riffs and Rotes • Happy New Year 2025<br>• <a href="https://inquiryintoinquiry.com/2025/01/01/riffs-and-rotes-happy-new-year-2025/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2025/01</span><span class="invisible">/01/riffs-and-rotes-happy-new-year-2025/</span></a></p><p>\( \text{Let} ~ p_n = \text{the} ~ n^\text{th} ~ \text{prime}. \)</p><p>\( \text{Then} ~ 2025<br>= 81 \cdot 25<br>= 3^4 5^2 \)</p><p>\( = {p_2}^4 {p_3}^2<br>= {p_2}^{{p_1}^{p_1}} {p_3}^{p_1}<br>= {p_{p_1}}^{{p_1}^{p_1}} {p_{p_2}}^{p_1}<br>= {p_{p_1}}^{{p_1}^{p_1}} {p_{p_{p_1}}}^{p_1} \)</p><p>No information is lost by dropping the terminal 1s. Thus we may write the following form.</p><p>\[ 2025 = {p_p}^{p^p} {p_{p_p}}^p \]</p><p>The article linked below tells how forms of that sort correspond to a family of digraphs called “riffs” and a family of graphs called “rotes”. The riff and rote for 2025 are shown in the next two Figures.</p><p>Riff 2025<br>• <a href="https://inquiryintoinquiry.files.wordpress.com/2025/01/riff-2025.png" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.files.wordp</span><span class="invisible">ress.com/2025/01/riff-2025.png</span></a></p><p>Rote 2025<br>• <a href="https://inquiryintoinquiry.files.wordpress.com/2025/01/rote-2025.png" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.files.wordp</span><span class="invisible">ress.com/2025/01/rote-2025.png</span></a></p><p>Reference —</p><p>Riffs and Rotes<br>• <a href="https://oeis.org/wiki/Riffs_and_Rotes" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">oeis.org/wiki/Riffs_and_Rotes</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/Arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Arithmetic</span></a> <a href="https://mathstodon.xyz/tags/Combinatorics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Combinatorics</span></a> <a href="https://mathstodon.xyz/tags/Computation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Computation</span></a> <a href="https://mathstodon.xyz/tags/Factorization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Factorization</span></a> <a href="https://mathstodon.xyz/tags/GraphTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraphTheory</span></a> <a href="https://mathstodon.xyz/tags/GroupTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GroupTheory</span></a> <br><a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/Primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Primes</span></a> <a href="https://mathstodon.xyz/tags/Recursion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Recursion</span></a> <a href="https://mathstodon.xyz/tags/Representation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Representation</span></a> <a href="https://mathstodon.xyz/tags/RiffsAndRotes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RiffsAndRotes</span></a></p>
Khurram Wadee ✅<p>After looking for a long time, I finally found this <a href="https://mastodon.org.uk/tags/Sliderule" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Sliderule</span></a>, which belonged to my late father. Some of you will know that these <a href="https://mastodon.org.uk/tags/devices" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>devices</span></a> were used, before the advent of digital <a href="https://mastodon.org.uk/tags/Calculators" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Calculators</span></a>, to perform <a href="https://mastodon.org.uk/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> operations such as <a href="https://mastodon.org.uk/tags/multiplication" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>multiplication</span></a> and <a href="https://mastodon.org.uk/tags/division" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>division</span></a> to about three significant figures, by <a href="https://mastodon.org.uk/tags/scientists" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scientists</span></a> and <a href="https://mastodon.org.uk/tags/engineers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>engineers</span></a>.</p><p><a href="https://mastodon.org.uk/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mastodon.org.uk/tags/Computation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Computation</span></a> (1/2)</p>
Rémi Eismann<p>"We could classify any area of math we think is leading in a bad direction to make it a state secret and "it will end"."</p><p>My decomposition is a state secret.<br>Academia is 13 years late. </p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/weight" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>weight</span></a> <a href="https://mathstodon.xyz/tags/level" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>level</span></a> <a href="https://mathstodon.xyz/tags/jump" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>jump</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A134619: Numbers such that the arithmetic mean of the cubes of their prime factors (taken with multiplicity) is a prime</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A134619.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A134619.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A134619.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A134619.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mean</span></a> <a href="https://mathstodon.xyz/tags/cubes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cubes</span></a> <a href="https://mathstodon.xyz/tags/prime" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>prime</span></a> <a href="https://mathstodon.xyz/tags/factors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>factors</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A134617: Numbers such that the arithmetic mean of the squares of their prime factors (taken with multiplicity) is a prime</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A134617.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A134617.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A134617.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A134617.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mean</span></a> <a href="https://mathstodon.xyz/tags/squares" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>squares</span></a> <a href="https://mathstodon.xyz/tags/prime" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>prime</span></a> <a href="https://mathstodon.xyz/tags/factors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>factors</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
David Ruffner<p>My 6 y/o was interested in seeing the multiplication table, so I created one manually with him. It is fun seeing how you can skip count to make the rows and columns. </p><p>But it got me thinking. What about the addition table? Or the exponentiation table? So I made small tables for both those operations too. The exponentiation table is interesting because it is not commutative.</p><p>I love how "advanced" math is right below the surface.<br><a href="https://raphus.social/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a><br><a href="https://raphus.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a><br><a href="https://raphus.social/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A134344: Composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is prime</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A134344.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A134344.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A134344.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A134344.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mean</span></a> <a href="https://mathstodon.xyz/tags/prime" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>prime</span></a> <a href="https://mathstodon.xyz/tags/factors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>factors</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
Rémi Eismann<p>The main OEIS pages about my decomposition are no longer indexed on Google:<br>User ➡️ <a href="https://oeis.org/wiki/User:R%C3%A9mi_Eismann" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/User:R%C3%A9mi_E</span><span class="invisible">ismann</span></a><br><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> ➡️ <a href="https://oeis.org/wiki/Decomposition_into_weight_*_level_%2B_jump" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Decomposition_in</span><span class="invisible">to_weight_*_level_%2B_jump</span></a><br>A117078 ➡️ <a href="https://oeis.org/A117078" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">oeis.org/A117078</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a></p>
Rémi Eismann<p>It's a new fundamental theorem of arithmetic and academia is 11 years late.</p><p>A short story about my decomposition ⬇️</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/academia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>academia</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/weight" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>weight</span></a> <a href="https://mathstodon.xyz/tags/level" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>level</span></a> <a href="https://mathstodon.xyz/tags/jump" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>jump</span></a> <a href="https://mathstodon.xyz/tags/NSA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NSA</span></a> <a href="https://mathstodon.xyz/tags/DGSE" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DGSE</span></a> <a href="https://mathstodon.xyz/tags/DGSI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DGSI</span></a> <a href="https://mathstodon.xyz/tags/Google" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Google</span></a></p>
Sean Murthy<p>Someone, please help me with this arithmetic. 🥺</p><p><a href="https://hachyderm.io/tags/Musk" class="mention hashtag" rel="tag">#<span>Musk</span></a> <a href="https://hachyderm.io/tags/uspol" class="mention hashtag" rel="tag">#<span>uspol</span></a> <a href="https://hachyderm.io/tags/ElonMusk" class="mention hashtag" rel="tag">#<span>ElonMusk</span></a> <a href="https://hachyderm.io/tags/VoterRegistration" class="mention hashtag" rel="tag">#<span>VoterRegistration</span></a> <a href="https://hachyderm.io/tags/arithmetic" class="mention hashtag" rel="tag">#<span>arithmetic</span></a></p>
Rémi Eismann<p>One day, one decomposition<br>A122535: Smallest prime of a triple of successive primes, where the middle one is the arithmetic mean of the other two</p><p>3D graph, threejs - webGL ➡️ <a href="https://decompwlj.com/3Dgraph/A122535.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3Dgraph/A122535.</span><span class="invisible">html</span></a><br>2D graph, first 500 terms ➡️ <a href="https://decompwlj.com/2Dgraph500terms/A122535.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/2Dgraph500terms/</span><span class="invisible">A122535.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/javascript" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>javascript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/successive" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>successive</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/middle" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>middle</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/mean" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mean</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>webGL</span></a></p>
claude<p>I nerdsniped myself into <a href="https://post.lurk.org/tags/BigNum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BigNum</span></a> <a href="https://post.lurk.org/tags/arithmetic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>arithmetic</span></a> for small systems like <a href="https://post.lurk.org/tags/C64" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>C64</span></a>, here's what I came up with so far (nat + * ^):</p><p><a href="https://mathr.co.uk/web/arithmetic.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathr.co.uk/web/arithmetic.htm</span><span class="invisible">l</span></a></p><p>Definitely not production-grade like a (Mini)GMP port would be, this is mainly to show that it's possible to do simple things without too much hassle.</p>